Licencja
Effects of Standard Model interactions on axion physics
Abstrakt (PL)
W mojej pracy analizuję model, w którym bozon Goldstone'a symetrii U(1)L, tak zwany majoron, zyskuje w niskoenergetycznej teorii efektywnej właściwości aksjonu, w tym typowe dla aksjonu sprzężenie do fotonów i gluonów. Mimo że skala łamania symetrii U(1)L w modelu jest dużo niższa niż typowa skala łamania symetrii U(1)PQ w modelach aksjonu, udaje się uzyskać niezwykle słabe oddziaływania efektywne dzięki oparciu się na zjawisku mieszania lewych i prawych neutrin, które odpowiada też za bardzo małe masy lekkich neutrin. Ponieważ obliczenie efektywnych sprzężeń majoronu do cząstek modelu Standardowego wymaga nawet rachunków 3-pętlowych rachunków (w przypadku sprzężenia do gluonów), pracę zaczynam od szczegółowego omówienia Modelu Standardowego, którego zrozumienie jest tu kluczowe. Przedstawiam też w miarę ogólnie mechanizm huśtawki (see-saw) i mieszania neutrin, wyprowadzając przy tym formuły na mieszające neutrina propagatory, których użycie upraszcza wiele rachunków eliminując z nich rozbieżności ultrafioletowe. Większa część mojej pracy zajmują obliczenia konkretnych amplitud wyrażanych przez diagramy Feynmana, poczynając od sprzężenia majoronu do bozonów Higgsa i bozonów cechowania W i Z, poprzez sprzężenie do naładowanych leptonów i do fotonów, do efektywnego oddziaływania z kwarkami i gluonami. Obliczenia dokonywane są analitycznie, i rezultaty mają postać formuł algebraicznych, choć z powodu skomplikowania wyrażeń, wartości liczbowe różnych stałych sprzężenia obliczane są ostatecznie numerycznie (z wyprowadzonych formuł). Pracę kończę krótką dyskusją uzyskanych wyników. Wyznaczone wartości stałych sprzężeń efektywnych oddziaływań są tak małe, że cząstka opisywana tym modelem byłaby niewidoczna w obecnych doświadczeniach. Także jej masa, której wielkość jest szacowana na podstawie siły sprzężenia do gluonów, byłaby bardzo mała, rzędu 10-9 eV, co dla typowych modeli jest wykluczone ze względu na argumenty kosmologiczne. Jednak jako że rozpatrywany model znacząco różni się od standardowych modeli aksjonu, w szczególności złamanie symetrii U(1)L następuje dużo później niż zazwyczaj zakłada się łamanie symetrii U(1)PQ, argumenty muszą zostać ponownie przeanalizowane.
Abstrakt (EN)
In my thesis I work with a particular extension of the Standard Model, with very little additional fields: just one additional complex scalar field and heavy neutrinos. The aspect of this model I was analyzing is how majoron, the Goldstone boson of spontaneously broken U(1)L symmetry, obtains effective couplings with Standard Model fields and gains properties of the axion. Although the U(1)L symmetry, unlike the Peccei-Quinn symnmetry usually introduced to describe axions, is non-anomalous and have much lower symmetry breaking scale, I show that due to the presence of Majorana fermions it is able to perform a similar feat. To compute these effective interactions, of which some require 3-loop calculation, one needs to understand the Standard Model, so I start with presenting it in detail. I present also the see-saw mechanism, responsible for giving mass to the neturinos, which also appears to be crucial in the process of obtaining axion-like properties by the majoron. For neutrinos, I derive a way to work with non-diagonal propagators that mix left- and right- chiral neutrinos, what makes many Feynman diagrams finite (normally, the ultra-violet divergences vanish only after suming up contributions from different diagrams). Most of the volume of my thesis is taken by the actual computation of many amplitudes, starting with the effective interaction of majoron with the Higgs fields and gauge bosons W and Z, through computation of the coupling to charged leptons, photons and quarks, finishing with the 3-loop calculation of its effective interaction with gluons. All calculations are performed algebraically, reuslts are given in the form of the multiple integrals over Feynman parameters, and only final values of the coupling constans are evaluated numerically (due to the complication of the obtained formulae). I finish my dissertation with a short discussion of the obtained results. The majoron appeared to develop an axion-like effective coupling to photons and gluons, but the coupling constants turned out to be so small that it would remain invisible in experiments. Such small coupling to the gluons causes mass of the axion to be very small as well, of order 10-9 eV, which is excluded for the standard axion models based on U(1) Peccei-Quinn symmetry. However, arguments for that comes from the cosmology, and the model I analyzed is very different in this aspects. Breaking of the U(1)L happens much later than assumed breaking of the U(1)PQ, and we cannot assume that cosmological consequences of standard axion models are valid for this moment as well. Therefore the arguments that disfavor such light axion needs to be reanalyzed.