Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Enhancement of UV-visible transmission characteristics in wet-etched hollow core anti-resonant fibers

Autor
Dinh, Khoa Xuan
Klimczak, Mariusz
BUCZYŃSKI, RYSZARD
Pysz, Dariusz
Stępniewski, Grzegorz
Long, Van Cao
Hoang, Van Thuy
KASZTELANIC, RAFAŁ
Data publikacji
2021
Abstrakt (EN)

We report on the feasibility of short-wavelength transmission window modification in anti-resonant hollow core fibers using post-processing by hydrofluoric (HF) acid etching. Direct drawing of stacked anti-resonant hollow core fibers with sub-micron thin cladding capillary membranes is technologically challenging, but so far this has been the only proven method of assuring over an octave-spanning transmission windows across the visible and UV wavelengths. In this study we revealed that low HF concentration allows us to reduce the thickness of the cladding capillary membranes from the initial 760 nm down to 180 nm in a controlled process. The glass etching rates have been established for different HF concentrations within a range non-destructive to the anti-resonant cladding structure. Etching resulted in spectral blue-shifting and broadening of anti-resonant transmission windows in all tested fiber samples with lengths between 15 cm and 75 cm. Spectrally continuous transmission, extending from around 200 nm to 650 nm was recorded in 75 cm long fibers with cladding membranes etched down to thickness of 180 nm. The experiment allowed us to verify the applicability and feasibility of controlling a silica fiber post-processing technique, aimed at broadening of anti-resonant transmission windows in hollow core fibers. A practical application of the processed fiber samples is demonstrated with their simple butt-coupling to light-emitting diodes centered at various ultraviolet wavelengths between 265 nm and 365 nm.

Dyscyplina PBN
nauki fizyczne
Czasopismo
Optics Express
Tom
29
Zeszyt
12
Strony od-do
18243-18262
ISSN
1094-4087
Licencja otwartego dostępu
Dostęp zamknięty