Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Taming the Duplication-Loss-Coalescence Model with Integer Linear Programming

Autor
Eulenstein, Oliver
Markin, Alexey
Paszek, Jarosław
Górecki, Paweł
Data publikacji
2021
Abstrakt (EN)

The duplication-loss-coalescence (DLC) parsimony model is invaluable for analyzing the complex scenarios of concurrent duplication loss and deep coalescence events in the evolution of gene families. However, inferring such scenarios for already moderately sized families is prohibitive owing to the computational complexity involved. To overcome this stringent limitation, we make the first step by describing a flexible integer linear programming (ILP) formulation for inferring DLC evolutionary scenarios. Then, to make the DLC model more scalable, we introduce four sensibly constrained versions of the model and describe modified versions of our ILP formulation reflecting these constraints. Our simulation studies showcase that our constrained ILP formulations compute evolutionary scenarios that are substantially larger than scenarios computable under our original ILP formulation and the original dynamic programming algorithm by Wu et al. Furthermore, scenarios computed under our constrained DLC models are remarkably accurate compared with corresponding scenarios under the original DLC model, which we also confirm in an empirical study with thousands of gene families.

Słowa kluczowe EN
coalescence
DLC
duplications
ILP
losses
phylogenetics
reconciliation
Dyscyplina PBN
informatyka
Czasopismo
Journal of Computational Biology
Tom
28
Zeszyt
8
Strony od-do
758-773
ISSN
1066-5277
Licencja otwartego dostępu
Dostęp zamknięty