Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

New Bounds on the Strength of Some Restrictions of Hindman’s Theorem

Autor
Lepore, Francesco
Carlucci, Lorenzo
Kołodziejczyk, Leszek
Zdanowski, Konrad
Data publikacji
2017
Abstrakt (EN)

We prove upper and lower bounds on the effective content and logical strength for a variety of natural restrictions of Hindman's Finite Sums Theorem. For example, we show that Hindman's Theorem for sums of length at most 2 and 4 colors implies ACA0. An emerging leitmotiv is that the known lower bounds for Hindman's Theorem and for its restriction to sums of at most 2 elements are already valid for a number of restricted versions which have simple proofs and better computability- and proof-theoretic upper bounds than the known upper bound for the full version of the theorem. We highlight the role of a sparsity-like condition on the solution set, which we call apartness.

Dyscyplina PBN
matematyka
Licencja otwartego dostępu
Dostęp zamknięty