Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Neuromorphic Binarized Polariton Networks

Autor
Furman, Magdalena
Tyszka, Krzysztof
Mirek, Rafał
Comaron, Paolo
Szczytko, Jacek
Liew, Timothy C. H.
Seredyński, Bartłomiej
Opala, Andrzej
Ballarini, Dario
Sanvitto, Daniele
Data publikacji
2021
Abstrakt (EN)

The rapid development of artificial neural networks and applied artificial intelligence has led to many applications. However, current software implementation of neural networks is severely limited in terms of performance and energy efficiency. It is believed that further progress requires the development of neuromorphic systems, in which hardware directly mimics the neuronal network structure of a human brain. Here, we propose theoretically and realize experimentally an optical network of nodes performing binary operations. The nonlinearity required for efficient computation is provided by semiconductor microcavities in the strong quantum light-matter coupling regime, which exhibit exciton–polariton interactions. We demonstrate the system performance against a pattern recognition task, obtaining accuracy on a par with state-of-the-art hardware implementations. Our work opens the way to ultrafast and energy-efficient neuromorphic systems taking advantage of ultrastrong optical nonlinearity of polaritons.

Słowa kluczowe EN
exciton-polaritons
binary network
nonlinear optics
semiconductors
microcavities
Dyscyplina PBN
nauki fizyczne
Czasopismo
Nano Letters
Tom
21
Zeszyt
9
Strony od-do
3715-3720
ISSN
1530-6984
Data udostępnienia w otwartym dostępie
2021-02-26
Licencja otwartego dostępu
Uznanie autorstwa