Praca doktorska
Ładowanie...
Miniatura

Optical properties of thin layers of transition metal dichalcogenides

Autor
Koperski, Maciej
Promotor
Kossacki, Piotr
Potemski, Marek
Data publikacji
2017-04-05
Abstrakt (PL)

Badania opisane w rozprawie pod tytułem „Optyczne własności cienkich warstw dichalkogenków metali przejściowych” dotyczą zjawisk fizycznych, które pojawiają się w granicy dwuwymiarowej miniaturyzacji, gdy grubość struktur osiąga skalę atomową. Znaczenie takich wytworzonych przez człowieka struktur dla zrozumienia podstawowych własności materiałów ujawniło się podczas dynamicznie rozwijających się badań nad grafenem: pojedynczej warstwie atomów węgla ułożonych w strukturę heksagonalną. Grafen, jako materiał bez przerwy energetycznej, był rozpatrywany głównie pod kątem własności elektrycznych. Badania materiałów półprzewodnikowych, również charakteryzujących się strukturą heksagonalną, dla których udało się odizolować pojedyncze warstwy, łączą nowe idee wywodzące się z odkrycia szczególnych cech grafenu (fizyka dolin w punkcie K strefy Brillouina) z wiedzą o bardziej typowych właściwościach półprzewodników. Rzeczywiście, nowego typu zjawiska zostały zademonstrowane w licznych, prowadzonych ostatnio, badaniach ultra-cienkich warstw półprzewodnikowych dichalkogenków metali przejściowych. Szczególnie interesujące, z puntu widzenia badań optycznych, wydaje się odkrycie zmiany charakteru przerwy energetycznej, która jest skośna w kryształach objętościowych, ale staje się prosta dla pojedynczej warstwy materiału. Opisane w tej pracy badania wykorzystują szczegółową charakteryzację optycznych własności cienkich struktur dichalkogenków metali przejściowych jako podstawę do rozważań na temat ich własności elektronowych. Manuskrypt składa się z pięciu części: trzech głównych rozdziałów poprzedzonych wstępem i uzupełnionych dodatkiem, w którym omówione zostały badania dotyczące innego przedstawiciela materiałów warstwowych: heksagonalnego azotku boru. Wstęp. Przedstawione zostały podstawowe własności badanych kryształów, szczególnie istotne z punktu widzenia badań optycznych. Dyskusja obejmuje informacje o strukturze krystalicznej, strefie Brillouina i elektronowej strukturze pasmowej. Ponadto omówiono ogólnie proces wytwarzania próbek i główne cechy układów doświadczalnych. Rozdział 1. Podstawowe własności optyczne rezonansów ekscytonowych w pojedynczych warstwach i wielowarstwach półprzewodnikowych dichalkogenków metali przejściowych. Przeanalizowano optyczną odpowiedź cienkich struktur dwuselenku molibdenu (MoSe2) i dwuselenku wolframu (WSe2), badaną poprzez pomiary widm odbicia i luminescencji. Szczegółowo zinterpretowano dane doświadczalne dotyczące wpływu liczby warstw oraz temperatury na energię i szerokość optycznych rezonansów. Uwzględniono także uzupełniające badania rozdzielone w czasie. Rozdział 2. Spektroskopia Zeemana rezonansów ekscytonowych w polu magnetycznym. Zbadano wpływ pola magnetycznego, przyłożonego prostopadle do powierzchni badanych struktur, na przejścia optyczne. Na podstawie otrzymanych wyników opracowano fenomenologiczny model mający na celu opis liniowych z polem magnetycznym wkładów do energii indywidualnych stanów elektronowych w podstawowych podpasmach pojedynczych warstw dichalkogenków metali przejściowych. Ponadto przeanalizowano efekty związane z pompowaniem optycznym w pojedynczych warstwach WSe2, którego wydajność można zwiększyć poprzez przyłożenie niewielkiego pola magnetycznego. Rozdział 3. Źródła pojedynczych fotonów w cienkich warstwach półprzewodnikowych dichalkogenków metali przejściowych. Przedyskutowano odkrycie centrów emitujących światło w postaci cienkich linii widmowych w eksfoliowanych strukturach dichalkogenków metali przejściowych. Optyczne badania dostarczyły informacji o ich podstawowych własnościach. Przedstawione badania dotyczą wpływu temperatury i pola magnetycznego na optyczną odpowiedź emitujących centrów, własności polaryzacyjnych oraz widm pobudzania jak również pomiarów korelacji fotonów. Dodatek A. Emitery pojedynczych fotonów w kryształach azotku boru. Heksagonalny azotek boru również należy do rodziny materiałów warstwowych, lecz charakteryzuje się znacznie większą przerwą energetyczną niż dichalkogenki metali przejściowych. Centra emitujące wąskie linie widmowe także zostały zaobserwowane w strukturach azotku boru. Wykazują one cechy upodabniające je do barwnych centrów w innych materiałach szeroko-przerwowych. Emitery w azotku boru zostały scharakteryzowane podobnie jak emitery w kryształach WSe2.

Abstrakt (EN)

The research reported in the thesis entitled ’Optical properties of thin layers of transition metal dichalcogenides’ focuses on physical phenomena which emerge in the limit of two-dimensional (2D) miniaturisation when the thickness of fabricated films reaches an atomic scale. The importance of such man-made structures has been revealed by the dynamic research on graphene: a single atomic plane of carbon atoms arranged in honeycomb lattice. Graphene is intrinsically gapless and therefore mainly explored with respect to its electric properties. The investigation of semiconducting materials which can also display the hexagonal crystal structure and which can be thinned down to individual layers, bridges the concepts characteristic of graphene-like systems (K-valley physics) with more conventional properties of semiconductors. This has been indeed demonstrated in a number of recent studies of ultra-thin films of semiconducting transition metal dichalcogenides (sc-TMD). Particularly appealing, from the point of view of optical studies, is a transformation of the bandgap alignment of sc-TMD films, from the indirect bandgap bulk crystals to the direct bandgap system in single layers. The presented thesis work provides a comprehensive optical characterisation of thin structures of sc-TMD crystals. The manuscript is divided into five parts: three main chapters with a preceding introduction and the appendix reporting the supplementary studies of another layered material: hexagonal boron nitride. Introduction. The fundamental properties of the investigated crystals are presented, especially those which are important from the point of view of optical studies. The discussion includes information on the crystal structure, Brillouin zone and electronic band structure. Also, the general description of the samples’ preparation process and experimental set-up is provided. Chapter 1. Basic optical characterisation of excitonic resonances in mono- and multi-layers of sc-TMDs. The optical response, as seen in the reflectance and luminescence spectra of thin scTMD is analysed (mostly for MoSe2 and WSe2 materials). The impact of the number of layers and temperature on the optical resonances is studied and interpreted in details. The complementary time-resolved study is also presented. Chapter 2. Zeeman spectroscopy of excitonic resonances in magnetic fields. The evolution of the optical resonances in an external magnetic field, applied perpendicularly to the layers of sc-TMD materials is investigated. Based on these results, a phenomenological model is developed aiming to describe the linear with magnetic field contributions to the energy of individual electronic states in fundamental sub-bands of sc-TMD monolayers. Furthermore, the effects of optical pumping are investigated in WSe2 monolayers, which can be tuned by tiny magnetic fields. Chapter 3. Single photon sources in thin sc-TMD flakes. The uncovering of localised narrow lines emitting centres at the edges of thin exfoliated sc-TMD flakes is discussed. The optical investigations provide information on their fundamental properties. The presented study covers a broad range of topics, such as the impact of temperature and magnetic field on the optical response of the emitting centres, analysis of their polarisation properties and excitation spectra as well as photon correlation measurements. Appendix A. Single photon emitters in boron nitride crystals. Hexagonal boron nitride also belongs to the family of layered materials, but it exhibits much larger band gap than semiconducting transition metal dichalcogenides. Narrow lines emitting centres have been observed in boron nitride structures, which reveal multiple similarities to defect centres in wide gap materials. They are characterised in a similar manner as the emitting centres in WSe2.

Słowa kluczowe PL
materiały warstwowe
własności optyczne
rezonanse ekscytonowe
badania magneto-optyczne
pompowanie optyczne
emitery pojedynczych fotonów
Inny tytuł
Optyczne własności cienkich warstw dichalkogenków metali przejściowych
Data obrony
2017-05-05
Licencja otwartego dostępu
Uznanie autorstwa