Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

The maximal operator from BMO to BLO on α-trees

Autor
Vasyunin, V.
Osękowski, Adam
Slavin, L.
Data publikacji
2020
Abstrakt (EN)

The explicit upper Bellman function is found for the natural dyadic maximal operator acting from BMO(Rn) into BLO(Rn). As a consequence, it is shown that the BMO→BLO norm of the natural operator equals 1 for all n, and so does the norm of the classical dyadic maximal operator. The main result is a partial consequence of a theorem for the so-called α-trees, which generalize dyadic lattices. The Bellman function in this setting exhibits an interesting quasiperiodic structure depending on α, but also allows a majorant independent of α, hence a dimension-free norm constant. Also, the decay of the norm is described with respect to the growth of the difference between the average of a function on a cube and the infimum of its maximal function on that cube. An explicit norm-optimizing sequence is constructed.

Słowa kluczowe EN
BMO
tree
Bellman function
maximal operator
Dyscyplina PBN
matematyka
Czasopismo
St. Petersburg Mathematical Journal
Tom
31
Zeszyt
5
Strony od-do
831-863
ISSN
1061-0022
Licencja otwartego dostępu
Dostęp zamknięty