Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Gossez's approximation theorems in Musielak–Orlicz–Sobolev spaces

Autor
Chlebicka, Iwona
Youssfi, Ahmed
Ahmida, Youssef
Gwiazda, Piotr
Data publikacji
2018
Abstrakt (EN)

We prove the density of smooth functions in the modular topology in Musielak–Orlicz–Sobolev spaces essentially extending the results of Gossez [17] obtained in the Orlicz–Sobolev setting. We impose new systematic regularity assumption on M which allows to study the problem of density unifying and improving the known results in Orlicz–Sobolev spaces, as well as variable exponent Sobolev spaces. We confirm the precision of the method by showing the lack of the Lavrentiev phenomenon in the double-phase case. Indeed, we get the modular approximation of functions by smooth functions in the double-phase space governed by the modular function with excluding the Lavrentiev phenomenon within the sharp range . See [11, Theorem 4.1] for the sharpness of the result.

Słowa kluczowe EN
Density of smooth functions
The Lavrentiev phenomenon
The Musielak–Orlicz–Sobolev spaces
Dyscyplina PBN
matematyka
Czasopismo
Journal of Functional Analysis
Tom
275
Zeszyt
9
Strony od-do
2538-2571
ISSN
0022-1236
Licencja otwartego dostępu
Dostęp zamknięty