Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Catoids and modal convolution algebras

Autor
Ziemiański, Krzysztof
Struth, Georg
Johansen, Christian
Fahrenberg, Uli
Data publikacji
2023
Abstrakt (EN)

We show how modal quantales arise as convolution algebras QX of functions from catoids X, multisemigroups equipped with source and target maps, into modal quantales value or weight quantales Q. In the tradition of boolean algebras with operators we study modal correspondences between algebraic laws in X, Q and QX. The catoids introduced generalise Schweizer and Sklar’s function systems and single-set categories to structures isomorphic to algebras of ternary relations, as they are used for boolean algebras with operators and substructural logics. Our correspondence results support a generic construction of weighted modal quantales from catoids. This construction is illustrated by many examples. We also relate our results to reasoning with stochastic matrices or probabilistic predicate transformers.

Słowa kluczowe EN
Multisemigroups
Catoids
Categories
Quantales
Convolution algebras
Modal algebras
Quantitative software verification
Dyscyplina PBN
matematyka
Czasopismo
Algebra Universalis
Tom
84
Zeszyt
2
Strony od-do
10: 1-40
ISSN
0002-5240
Data udostępnienia w otwartym dostępie
2023-02-25
Licencja otwartego dostępu
Uznanie autorstwa