Licencja
The effect of the length of terminal n-alkyl carboxylate chain on selfassembling and photosensitive properties of chiral lactic acid derivatives
Abstrakt (EN)
A newseries of photosensitive azomaterials possessing a chiral alkyl lactatemoiety and terminal n-alkyl carboxylate unit close to the azo group has been synthesized and studied. The length of the n-alkyl carboxylate chain has been systematically varied in order to establish the effect of the molecular structure on the self-assembling behaviour. Two series of materials possessing hexyl and dodecyl alkyl chains in the chiral part of the molecule have been studied. It has been shown that the length of both the alkyl chains strongly influences the mesomorphic behaviour, however, each chiral/achiral chain has different utility to tune themesomorphic properties.With exception of the compound with the longest chains, all studied compounds exhibited the chiral tilted ferroelectric smectic C* phase. Based on the combination of terminal alkyl chains, chiral nematic, orthogonal smectic A*, and twist grain boundary smectic A* phases have been detected on cooling beyond the SmC* phase. The presence of the photosensitive functional N=N group in the molecular core allowed further tuning of the material properties by UV light illumination. The E-to-Z photoisomerization of the azo group and subsequent thermal backisomerisation have been studied in solution by nuclear magnetic resonance and most importantly in the mesophases on bulk samples. We report on UV-induced isothermal switching from chiral smectic and nematic mesophases into the isotropic phase, respectively, and differences in the textures of mesophase upon restoration of the ordered liquid.