Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Existence of solutions to a general geometric elliptic variational problem

Autor
Kolasiński, Sławomir
Fang, Yangqin
Data publikacji
2018
Abstrakt (EN)

We consider the problem of minimising an inhomogeneous anisotropic elliptic functional in a class of closed m dimensional subsets of R n which is stable under taking smooth deformations homotopic to the identity and under local Hausdorff limits. We prove that the minimiser exists inside the class and is an ( H m , m) rectifiable set in the sense of Federer. The class of competitors encodes a notion of spanning a boundary. We admit unrectifiable and non-compact competitors and boundaries, and we make no restrictions on the dimension m and the co-dimension n − m other than 1 ≤ m < n. An important tool for the proof is a novel smooth deformation theorem. The skeleton of the proof and the main ideas follow Almgren’s (Ann Math (2) 87:321–391, 1968) paper. In the end we show that classes of sets spanning some closed set B in homological and cohomological sense satisfy our axioms.

Słowa kluczowe EN
the Plateau problem
anisotropic functional
varifold
ellipticity in geometric variational problems
Dyscyplina PBN
matematyka
Czasopismo
Calculus of Variations and Partial Differential Equations
Tom
57
Zeszyt
3
Strony od-do
91:1-91:71
ISSN
0944-2669
Licencja otwartego dostępu
Dostęp zamknięty