Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Machine Learning for detection of viral sequences in human metagenomic datasets

Autor
Dillner, Joakim
Bała, Piotr
Bzhalava, Zurab
Vicente, Raul
Tampuu, Ardii
Data publikacji
2018
Abstrakt (EN)

Background: Detection of highly divergent or yet unknown viruses from metagenomics sequencing datasets is a major bioinformatics challenge. When human samples are sequenced, a large proportion of assembled contigs are classified as “unknown”, as conventional methods find no similarity to known sequences. We wished to explore whether machine learning algorithms using Relative Synonymous Codon Usage frequency (RSCU) could improve the detection of viral sequences in metagenomic sequencing data. Results: We trained Random Forest and Artificial Neural Network using metagenomic sequences taxonomically classified into virus and non-virus classes. The algorithms achieved accuracies well beyond chance level, with area under ROC curve 0.79. Two codons (TCG and CGC) were found to have a particularly strong discriminative capacity. Conclusion: RSCU-based machine learning techniques applied to metagenomic sequencing data can help identify a large number of putative viral sequences and provide an addition to conventional methods for taxonomic classification.

Słowa kluczowe EN
Machine learning
Metagenomic sequencing
Human samples
Viral genomes
Dyscyplina PBN
informatyka
Czasopismo
BMC Bioinformatics
Tom
19
Zeszyt
1
Strony od-do
336:1-11
ISSN
1471-2105
Data udostępnienia w otwartym dostępie
2018-09-24
Licencja otwartego dostępu
Uznanie autorstwa