Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Functional Inequalities for Two-Level Concentration

Autor
Barthe, Franck
Strzelecki, Michał
Data publikacji
2022
Abstrakt (EN)

Probability measures satisfying a Poincaré inequality are known to enjoy a dimension-free concentration inequality with exponential rate. A celebrated result of Bobkov and Ledoux shows that a Poincaré inequality automatically implies a modified logarithmic Sobolev inequality. As a consequence the Poincaré inequality ensures a stronger dimension-free concentration property, known as two-level concentration. We show that a similar phenomenon occurs for the Latała–Oleszkiewicz inequalities, which were devised to uncover dimension-free concentration with rate between exponential and Gaussian. Motivated by the search for counterexamples to related questions, we also develop analytic techniques to study functional inequalities for probability measures on the line with wild potentials.

Słowa kluczowe EN
Beckner-type inequalities
Concentration of measure
Modified log-Sobolev inequalities
Dyscyplina PBN
matematyka
Czasopismo
Potential Analysis
Tom
56
Strony od-do
669–696
ISSN
0926-2601
Data udostępnienia w otwartym dostępie
2021-07-03
Licencja otwartego dostępu
Uznanie autorstwa