Licencja
Knots, links and lassos – topological manifolds in biological objects
Abstrakt (PL)
Łańcuchy białkowe opisywane są zazwyczaj w ramach czterorzędowej organizacji struktury. Jednakże, ten sposób opisu nie pozwala na uwzględnienie niektórych aspektów geometrii białek. Jedną z brakujących cech jest obecność węzła stworzonego przez łańcuch główny. Odkrycie białek posiadających taki węzeł budzi pytania o zwijanie takich białek i funkcję węzła. Pomimo połączonego podejścia teoretycznego i eksperymentalnego, odpowiedź na te pytania nadal pozostaje nieuchwytna. Z drugiej strony, prócz zawęźlonych białek, w ostatnich czasach zostały zidentyfikowane pojedyncze struktury zawierające inne, topologicznie nietrywialne motywy. Funkcja tych motywów i ścieżka zwijania białek ich zawierających jest również nieznana w większości przypadków. Ta praca jest pierwszym holistycznym podejściem do całego tematu nietrywialnej topologii w białkach. Prócz białek z zawęźlonym łańcuchem głównym, praca opisuje także inne motywy: białka-lassa, sploty, zawęźlone pętle i teta-krzywe. Niektóre spośród tych motywów zostały odkryte w ramach pracy. Wyniki skoncentrowano na klasyfikacji, występowaniu, funkcji oraz zwijaniu białek z topologicznie nietrywialnymi motywami. W części poświęconej klasyfikacji, zaprezentowane zostały wszystkie topologicznie nietrywialne motywy występujące w białkach. W szczególności, zaproponowano i opisano nowe matematyczne narzędzia umożliwiające klasyfikację białek-lass. W części dotyczącej występowania struktur rozważane jest statystyczne prawdopodobieństwo występowania różnych motywów. Ich mniejsza liczba w porównaniu z szacunkami wynikającymi z modeli polimerowych stanowi wstęp do rozważań na temat funkcji nietrywialnej topologii. W szczególności pokazano, że funkcją splotu jest wprowadzenie szczególnej stabilności łańcucha, a w przypadku niektórych białek topologia lassa jest najprawdopodobniej niezbędna do pełnienia przez nie funkcji. W tej części zaproponowana została również funkcja węzła w łańcuchu głównym, wspomagająca tworzenie i stabilizująca miejsca aktywne enzymów. Nowy mechanizm zwijania zawęźlonych białek wykorzystujący rybosom rozpoczyna część czwartą, w której analizowany jest również wpływ topologii, ograniczonej objętości i długości węzła na zwijanie białek. Skrupulatna analiza wszystkich dostępnych struktur przestrzennych białek możliwa była jedynie po stworzeniu odpowiednich narzędzi programistycznych. Narzędzia te zostały przekazane naukowej wspólnocie pod postacią baz danych, serwerów, wtyczek do innych programów oraz paczki programistycznej. Narzędzia te opisane są w części piątej. Praca kończy się wskazaniem przyszłych kierunków rozwoju dziedziny oraz zbiorem literatury okalającej zagadnienia zawarte w pracy. Zestaw ten skierowany jest do przyszłych adeptów, stanowiąc przewodnik po świecie białek o skomplikowanej topologii i zachętę do dalszych prac.
Abstrakt (EN)
The organization of amino acids in the protein is usually described in terms of four levels of structure classification which, however, misses some important aspects of protein geometry. One of the protein features absent is the existence of the knot tied on the protein backbone. The discovery of such knotted proteins raises the questions of the folding of such proteins and the function of the backbone knot. Despite theoretical and experimental investigation, the answers on both of these questions remain elusive. Moreover, apart from the knotted proteins, some singular cases of other topologically non-trivial proteins were recently identified, for which the folding and the function are also unknown. This work is the first holistic elaboration on the whole field of the proteins with complex topology. Apart from the backbone knots, the work describes also other motifs, some discovered as the result of the project: complex lassos, protein links, knotted loops, and theta-curves. The work concentrates on the classification, occurrence, function, and folding of proteins with the topologically complex motifs. In the classification part, all the topologically non-trivial motifs present in proteins are described. In particular, novel mathematical tools to classify the complex lasso structures are proposed. In the part devoted to occurrence of the motifs, their statistical probability is presented. Observed underrepresentation of the motifs in comparison with polymer models becomes a prelude to the function of the complex topology. In particular, the links are shown to stabilize the structure, and the lasso topology is strongly suggested to be crucial for the function of some proteins. In this part also the enzyme-favoring function of the backbone knot is proposed. The novel, ribosome-based mechanism of folding of the proteins with backbone knots begins the fourth part, in which also the influence of the topology, confinement, and knot tails on folding process is analyzed. The scrupulous analysis of the whole database of the protein structures was possible only with the creation of the special tools. These were given to the broad scientific community in the form of databases, servers, plugins, and a Python package, to which the fifth part of the work is devoted. The work is finalized with the future directions and further reading sections which, hopefully, will inspire younger adepts to immerse into the field of complex topology proteins.