Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?

Autor
Dittwald, Piotr
Miasojedow, Błażej
Gajewska, Ewa
Gambin, Anna
Szymkuć, Sara
Grzybowski, Bartosz
Skoraczyński, Grzegorz
Data publikacji
2017
Abstrakt (EN)

As machine learning/artificial intelligence algorithms are defeating chess masters and, most recently, GO champions, there is interest – and hope – that they will prove equally useful in assisting chemists in predicting outcomes of organic reactions. This paper demonstrates, however, that the applicability of machine learning to the problems of chemical reactivity over diverse types of chemistries remains limited – in particular, with the currently available chemical descriptors, fundamental mathematical theorems impose upper bounds on the accuracy with which raction yields and times can be predicted. Improving the performance of machine-learning methods calls for the development of fundamentally new chemical descriptors.

Słowa kluczowe EN
Cheminformatics
Computational science
Dyscyplina PBN
informatyka
Czasopismo
Scientific Reports
Tom
7
Zeszyt
1
Strony od-do
3582:1-3582:9
ISSN
2045-2322
Data udostępnienia w otwartym dostępie
2017-06-15
Licencja otwartego dostępu
Uznanie autorstwa