Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Surface-enhanced Raman scattering of graphene caused by self-induced nanogating by GaN nanowire array

Autor
Bożek, Rafał
Żytkiewicz, Zbigniew
GRZONKA, JUSTYNA
Kierdaszuk, Jakub
Sobańska, Marta
Drabińska, Aneta
Kazmierczak, P.
Kłosek, Kamil
Wołoś, Agnieszka
Wysmołek, Andrzej
Data publikacji
2018
Abstrakt (EN)

A constant height of gallium nitride (GaN) nanowires with graphene deposited on them is shown to have a strong enhancement of Raman scattering, whilst variable height nanowires fail to give such an enhancement. Scanning electron microscopy reveals a smooth graphene surface which is present when the GaN nanowires are uniform, whereas graphene on nanowires with substantial height differences is observed to be pierced and stretched by the uppermost nanowires. The energy shifts of the characteristic Raman bands confirms that these differences in the nanowire height has a significant impact on the local graphene strain and the carrier concentration. The images obtained by Kelvin probe force microscopy show clearly that the carrier concentration in graphene is modulated by the nanowire substrate and dependent on the nanowire density. Therefore, the observed surface enhanced Raman scattering for graphene deposited on GaN nanowires of comparable height is triggered by self-induced nano-gating to the graphene. However, no clear correlation of the enhancement with the strain or the carrier concentration of graphene was discovered. (C) 2017 Elsevier Ltd. All rights reserved.

Dyscyplina PBN
nauki fizyczne
Czasopismo
Carbon
ISSN
0008-6223
Licencja otwartego dostępu
Dostęp zamknięty