Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Pseudodifferential Weyl Calculus on (Pseudo-)Riemannian Manifolds

Autor
Dereziński, Jan
Siemssen, Daniel
Latosiński, Adam
Data publikacji
2020
Abstrakt (EN)

One can argue that on flat space Rd, the Weyl quantization is the most natural choice and that it has the best properties (e.g., symplectic covariance, real symbols correspond to Hermitian operators). On a generic manifold, there is no distinguished quantization, and a quantization is typically defined chart-wise. Here we introduce a quantization that, we believe, has the best properties for studying natural operators on pseudo-Riemannian manifolds. It is a generalization of the Weyl quantization—we call it the balanced geodesic Weyl quantization. Among other things, we prove that it maps square-integrable symbols to Hilbert–Schmidt operators, and that even (resp. odd) polynomials are mapped to even (resp. odd) differential operators. We also present a formula for the corresponding star product and give its asymptotic expansion up to the fourth order in Planck’s constant.

Dyscyplina PBN
nauki fizyczne
Czasopismo
Annales Henri Poincare
Tom
21
Zeszyt
5
Strony od-do
1595-1635
ISSN
1424-0637
Licencja otwartego dostępu
Dostęp zamknięty