Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

On Hamiltonian structures of quasi-Painlevé equations

Autor
Stokes, Alexander
Filipuk, Galina
Data publikacji
2023
Abstrakt (EN)

We describe the quasi-Painlevé property of a system of ordinary differen- tial equations in terms of a global Hamiltonian structure on an analogue of Okamoto’s space of initial conditions for the Painlevé equations. In the quasi- Painlevé case, the Hamiltonian structure is with respect to a two-form which is allowed to have certain zeroes on the surfaces forming the space of initial conditions, as opposed to holomorphic symplectic forms in the case of the Painlevé equations. We provide the spaces and Hamiltonian structures for sev- eral known quasi-Painlevé equations and also for a new example, which we prove to have the quasi-Painlevé property via the Hamiltonian structure and construction of an appropriate auxiliary function which remains bounded on solutions.

Dyscyplina PBN
matematyka
Czasopismo
Journal of Physics A: Mathematical and Theoretical
Tom
56
Zeszyt
49
Strony od-do
495205, 1-37
ISSN
1751-8113
Licencja otwartego dostępu
Dostęp zamknięty