Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

A study of continuous vector representations for theorem proving

Autor
Purgał, Stanisław
Kaliszyk, Cezary
Parsert, Julian
Data publikacji
2021
Abstrakt (EN)

Applying machine learning to mathematical terms and formulas requires a suitable representation of formulas that is adequate for AI methods. In this paper, we develop an encoding that allows for logical properties to be preserved and is additionally reversible. This means that the tree shape of a formula including all symbols can be reconstructed from the dense vector representation. We do that by training two decoders: one that extracts the top symbol of the tree and one that extracts embedding vectors of subtrees. The syntactic and semantic logical properties that we aim to preserve include both structural formula properties, applicability of natural deduction steps and even more complex operations like unifiability. We propose datasets that can be used to train these syntactic and semantic properties. We evaluate the viability of the developed encoding across the proposed datasets as well as for the practical theorem proving problem of premise selection in the Mizar corpus.

Dyscyplina PBN
informatyka
Czasopismo
Journal of Logic and Computation
Strony od-do
1-27
ISSN
0955-792X
Licencja otwartego dostępu
Dostęp zamknięty