Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Uni-asymptotic Linear systems and Jacobi Operators

Autor
Moszyński, Marcin
Data publikacji
2019
Abstrakt (EN)

A family {Us}s∈S of bounded linear operators in a normed space X is uni-asymptotic, when all its trajectories {Usx}s∈S with x≠0 have the same norm-asymptotic behavior (see 1.5); {Us}s∈S is tight, when the operator norm and the minimal modulus of Us have the same asymptotic behavior (see 1.6). We prove that uni-asymptoticity is equivalent to tightness if dimX<+∞, and that the finite dimension is essential. Some other conditions equivalent to uni-asymptoticity are provided, including asymptotic formulae for the operator norm and for the trajectories, expressed in terms of determinants detUs (see Theorem 1.7). We find a connection of these abstract results with some results and notions from spectral theory of Jacobi operators, e.g., with the H-class property for transfer matrix sequence.

Słowa kluczowe EN
Linear dynamical systems
Families of operators
Trajectories (orbits)
Asymptotics of solutions
Operator norm
Minimal modulus
Jacobi matrices (operators)
Spectral properties
Absolutely continuous spectrum
Dyscyplina PBN
matematyka
Czasopismo
Integral Equations and Operator Theory
Tom
91
Zeszyt
3
Strony od-do
23:1-23:15
ISSN
0378-620X
Licencja otwartego dostępu
Dostęp zamknięty