Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

The logical strength of Büchi's decidability theorem

Autor
Pradic, Pierre
Michalewski, Henryk
Kołodziejczyk, Leszek
Skrzypczak, Michał
Data publikacji
2019
Abstrakt (EN)

We study the strength of axioms needed to prove various results related toautomata on infinite words and B ̈uchi’s theorem on the decidability of theMSOtheory of(N,≤). We prove that the following are equivalent over the weak second-order arithmetictheoryRCA0:(1) the induction scheme for Σ02formulae of arithmetic,(2) a variant of Ramsey’s Theorem for pairs restricted to so-calledadditive colourings,(3) B ̈uchi’s complementation theorem for nondeterministic automata on infinite words,(4)the decidability of the depth-nfragment of theMSOtheory of (N,≤), for eachn≥5,Moreover, each of (1)–(4) implies McNaughton’s determinisation theorem for automataon infinite words, as well as the “bounded-width” version of K ̈onig’s Lemma, often used inproofs of McNaughton’s theorem.

Dyscyplina PBN
matematyka
Czasopismo
Logical Methods in Computer Science
Tom
15
Zeszyt
2
Strony od-do
16:1-16:31
ISSN
1860-5974
Licencja otwartego dostępu
Dostęp zamknięty