Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

7-Methylguanosine monophosphate analogues with 5'-(1,2,3-triazoyl) moiety: Synthesis and evaluation as the inhibitors of cNIIIB nucleotidase

Autor
Kubacka, Dorota
Wojtczak, Błażej
Baranowski, Marek
Kowalska, Joanna
Kasprzyk, Renata
Kozarski, Mateusz
Data publikacji
2018
Abstrakt (EN)

The hydrolysis of nucleoside 5'-monophosphates to the corresponding nucleosides and inorganic phosphate is catalysed by 5'-nucleotidases, thereby contributing to the control of endogenous nucleotide turnover and affecting the fate of exogenously delivered nucleotide- and nucleoside-derived therapeutics in cells. A recently identified nucleotidase cNIIIB shows preference towards 7-methylguanosine monophosphate (m7GMP) as a substrate, which suggests its potential involvement in mRNA degradation. However, the extent of biological functions and the significance of cNIIIB remains to be elucidated. Here, we synthesised a series of m7GMP analogues carrying a 1,2,3-triazole moiety at the 5' position as the potential inhibitors of human cNIIIB. The compounds were synthesised by using the copper-catalysed azide-alkyne cycloaddition (CuAAC) between 5'-azido-5'-deoxy-7-methylguanosine and different phosphate or phosphonate derivatives carrying terminal alkyne. The analogues were evaluated as cNIIIB inhibitors using HPLC and malachite green assays, demonstrating that compound 1a, carrying a 1,2,3-triazoylphosphonate moiety, inhibits cNIIIB activity at micromolar concentrations (IC50 87.8 ± 7.5 µM), while other analogues showed no activity. In addition, compound 1d was identified as an artifical substrate for HscNIIIB. Further characterization of inhibitor 1a revealed that it is poorly recognised by other m7G-binding proteins, eIF4E and DcpS, indicating its selectivity towards cNIIIB. The first inhibitor (1a) and unnatural substrate (1d) of cNIIIB, identified here, can be used as molecular probes for the elucidation of biological roles of cNIIIB, including the verification of its proposed function in mRNA metabolism.

Słowa kluczowe EN
5′ Nucleotidase cNIIIB
7-Methylguanosine 5′-monophosphate
Click chemistry
Enzyme inhibitor
mRNA cap
mRNA degradation
Dyscyplina PBN
nauki chemiczne
Czasopismo
Bioorganic and Medicinal Chemistry
ISSN
0968-0896
Licencja otwartego dostępu
Dostęp zamknięty