Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Conformal Invariance of Characteristic Lines in a Class of Hydrodynamic Models

Autor
Grebenev, Vladimir N.
Oberlack, Martin
Wacławczyk, Marta
Data publikacji
2020
Abstrakt (EN)

This paper addresses the problem of the existence of conformal invariance in a class of hydrodynamic models. For this we analyse an underlying transport equation for the one-point probability density function, subject to zero-scalar constraint. We account for the presence of non-zero viscosity and large-scale friction. It is shown analytically, that zero-scalar characteristics of this equation are invariant under conformal transformations in the presence of large-scale friction. However, the non-zero molecular diffusivity breaks the conformal group (CG). This connects our study with previous observations where CG invariance of zero-vorticity isolines of the 2D Navier–Stokes equation was analysed numerically and confirmed only for large scales in the inverse energy cascade. In this paper, an example of CG is analysed and possible interpretations of the analytical results are discussed.

Słowa kluczowe EN
conformal symmetry
Lundgren–Monin–Novikov equations
method of characteristics.
Dyscyplina PBN
nauki fizyczne
Czasopismo
Symmetry
Tom
12
Zeszyt
9
Strony od-do
1482
ISSN
2073-8994
Licencja otwartego dostępu
Dostęp zamknięty