Rozdział w monografii
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

A Unified Approach to Poisson–Hopf Deformations of Lie–Hamilton Systems Based on $$\mathfrak {sl}$$(2)

Autor
Araujo, Javier De Lucas
Herranz, Francisco J.
Campoamor-Stursberg, Rutwig
Fernández-Saiz, Eduardo
Ballesteros, Ángel
Data publikacji
2018
Abstrakt (EN)

Based on a recently developed procedure to construct Poisson–Hopf deformations of Lie–Hamilton systems [9], a novel unified approach to nonequivalent deformations of Lie–Hamilton systems on the real plane with a Vessiot–Guldberg Lie algebra isomorphic to sl(2) is proposed. This, in particular, allows us to define a notion of Poisson–Hopf system in dependence of a parameterized family of Poisson algebra representations. Such an approach is explicitly illustrated by applying it to the three non-diffeomorphic classes of sl(2) Lie–Hamilton systems. Our results cover deformations of the Ermakov system, Milne–Pinney, Kummer–Schwarz and several Riccati equations as well as of the harmonic oscillator (all of them with t-dependent coefficients). Furthermore t-independent constants of motion are given as well. Our methods can be employed to generate other Lie–Hamilton systems and their deformations for other Vessiot–Guldberg Lie algebras and their deformations.

Dyscyplina PBN
nauki fizyczne
Tytuł monografii
Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1
Strony od-do
347-366
Wydawca ministerialny
Springer
Licencja otwartego dostępu
Dostęp zamknięty