Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Halogen bonding with carbon: directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures

Autor
Friščić, Tomislav
Barrett, Christopher J
Perepichka, Dmytro
Coles, Simon
Topić, Filip
Hamzehpoor, Ehsan
Spilfogel, Toni S
McPherson, Laura J. McCormick
Arhangelskis, Mihails
Borchers, Tristan H
Data publikacji
2023
Abstrakt (EN)

Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we demonstrate an effective, different, and previously overlooked, paradigm for the assembly of carbon-only aromatic systems: not through non-directional π-stacking, but via specific and directional halogen bonding. We present the a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I···πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I···πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In >90% of herein presented structures, the C-I···πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.

Dyscyplina PBN
nauki chemiczne
Czasopismo
Chemical Science
ISSN
2041-6520
Data udostępnienia w otwartym dostępie
2023-10-24
Licencja otwartego dostępu
Uznanie autorstwa