Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

On CiR equations with general factors

Autor
Barski, Michał
Zabczyk, Jerzy
Data publikacji
2020
Abstrakt (EN)

The paper is concerned with stochastic equations for the short rate process R, dR(t) = F(R(t))dt+ G(R(t ))dZ(t), in the affine model of the bond prices. The equation is driven by a L\'evy martingale Z. It is shown that the discounted bond prices are local martingales if either Z is a stable process of index \alpha \in (1, 2], F(x) = ax+b, b \geq 0, G(x) = cx1/\alpha , c > 0, or Z must be a L\'evy martingale with positive jumps and trajectories of bounded variation, F(x) = ax+b, b \geq 0, and G is a constant. The result generalizes the well-known Cox--Ingersoll--Ross result from [I. Cox, J. Ingersoll, and S. Ross, Econometrica, 53 (2004), pp. 385--408] and extends the Vasi\v cek result (see [O. Vasi\v cek, J. Financial Econom., 5 (1977), pp. 177--188]) to nonnegative short rates.

Słowa kluczowe EN
CIR model
bond market
HJM condition
stable martingales
Dyscyplina PBN
matematyka
Czasopismo
SIAM Journal on Financial Mathematics
Tom
11
Zeszyt
1
Strony od-do
131-147
ISSN
1945-497X
Licencja otwartego dostępu
Dostęp zamknięty