Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Approximation, solution operators and quantale-valued metrics

Autor
Siedlecki, Paweł
Data publikacji
2017
Abstrakt (EN)

A generalized solution operator is a mapping abstractly describing a computational problem and its approximate solutions. It assigns a set of ε-approximations of a solution to the problem instance f and accuracy of approximation ε. In this paper we study generalized solution operators for which the accuracy of approximation is described by elements of a complete lattice equipped with a compatible monoid structure, namely, a quantale. We provide examples of computational problems for which the accuracy of approximation of a solution is measured by such objects. We show that the sets of ε-approximations are, roughly, closed balls with radii ε with respect to a certain family of quantale-valued generalized metrics induced by a generalized solution operator.

Dyscyplina PBN
matematyka
Czasopismo
Aequationes Mathematicae
Tom
91
Zeszyt
4
Strony od-do
745–758
ISSN
0001-9054
Licencja otwartego dostępu
Dostęp zamknięty