Journal Article
No Thumbnail Available
License

ClosedAccessClosed Access

Experimental and Theoretical Insights into Molecular and Solid-State Properties of Isomeric Bis(salicylaldehydes)

Author
Durka, Krzysztof
Górski, Bartosz
Błocki, Krzysztof
Luliński, Sergiusz
Urban, Mateusz
Barbasiewicz, Michał
Woźniak, Krzysztof
Publication date
2019
Abstract (EN)

A series of five bis(salicylaldehydes), including four isomeric compounds based on a benzene scaffold and a closely related naphthalene derivative, were investigated in order to elucidate the impact of resonance effects and intramolecular hydrogen bonds (HBs) on the macroscopic properties of these systems. Density functional theory (DFT) computations revealed important differences between isomers on the molecular level, which was reflected in different charge distributions, aromatic C–C bond orders, and aromaticity characters. The consequences of these features were evidenced by the UV–vis absorption spectra: for 1,3-diformyl-4,6-dihydroxybenzene (2), the longest wavelength absorption band is observed at 285 nm, while its isomers 1,4-diformyl-2,5-dihydroxybenzene (1), 1,4-diformyl-2,3-dihydroxybenzene (3), and 1,2-diformyl-3,6-dihydroxybenzene (4) are characterized by absorption in the visible range (379–407 nm). The specificity of 2 results from simultaneous lowering and elevation of HOMO and LUMO energy levels, respectively. We have found that the HOMO/LUMO energy variations follow trends observed in isomeric dihydroxybenzenes (HOMO) and phthalaldehydes (LUMO), and these effects operate separately to some extent. Furthermore, theoretical calculations indicate that the UV–vis spectral properties of bis(salicylaldehydes) are directly transferable to the corresponding bis(salicylaldimines) and their boron complexes. Finally, the influence of structural and molecular stabilization effects was analyzed by means of X-ray structural analysis and periodic DFT computations.

PBN discipline
chemical sciences
Journal
Journal of Physical Chemistry A
Volume
123
Issue
40
Pages from-to
8674-8689
ISSN
1089-5639
Open access license
Closed access