Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Efficient enumeration of non-equivalent squares in partial words with few holes

Autor
Pissis, Solon P.
Charalampopoulos, Panagiotis
Radoszewski, Jakub
Kociumaka, Tomasz
Crochemore, Maxime
Waleń, Tomasz
Rytter, Wojciech
Iliopoulos, Costas S.
Data publikacji
2019
Abstrakt (EN)

A word of the form WW for some word $W\in Σ^*$ is called a square. A partial word is a word possibly containing holes (also called don't cares). The hole is a special symbol ◊∉Σ which matches any symbol from Σ∪◊. A p-square is a partial word matching at least one square WW without holes. Two p-squares are called equivalent if they match the same set of squares. A p-square is called here unambiguous if it matches exactly one square WW without holes. Such p-squares are natural counterparts of classical squares. Let $PSQUARES_k(n)$ and $USQUARES_k(n)$ be the maximum number of non-equivalent p-squares and non-equivalent unambiguous p-squares in T over all partial words T of length n with at most k holes. We show asymptotically tight bounds: $PSQUARES_k(n) = \Theta(\min(nk^2, n^2))$ and $USQUARES_k(n) = \Theta(nk)$. We present an algorithm that reports all non-equivalent p-squares in $O(nk^3)$ time for a partial word of length n with k holes, for an integer alphabet. In particular, it runs in linear time for $k=O(1)$ and its time complexity near-matches the asymptotic bound for $PSQUARES_k(n)$. We also show an $O(n)$-time algorithm that reports all non-equivalent p-squares of a given length. The paper is a full and improved version of Charalampopoulos et al. (in Cao Y, Chen Y (eds) Proceedings of the 23rd international conference on computing and combinatorics, COCOON 2017; Springer, 2017).

Dyscyplina PBN
informatyka
Czasopismo
Journal of Combinatorial Optimization
Tom
37
Zeszyt
2
Strony od-do
501–522
ISSN
1382-6905
Licencja otwartego dostępu
Dostęp zamknięty