Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data

Autor
Szymczak, Paulina
Shafighi, Shadi Darvish
Domżał, Konrad
FILIPIUK, IWONA
Rączkowski, Łukasz
Szczurek, Ewa
Nowis, Dominika
Lagergren, Jens
Koperski, Łukasz
KACZMAREK, LESZEK
Data publikacji
2023
Abstrakt (EN)

Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue.

Słowa kluczowe EN
Probabilistic model
MCMC sampling
Spatial transcriptomics data
Cell types
Dyscyplina PBN
informatyka
Czasopismo
Genome Biology
Tom
24
Zeszyt
1
Strony od-do
120: 1-36
ISSN
1474-7596
Data udostępnienia w otwartym dostępie
2023-05-17
Licencja otwartego dostępu
Uznanie autorstwa