Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Improving settlement selection for small-scale maps using data enrichment and machine learning

Autor
Weibel, Robert
Karsznia, Izabela
Data publikacji
2018
Abstrakt (EN)

Acquiring and formalizing cartographic knowledge still is a challenge, especially when the generalization process concerns small-scale maps. We concentrate on the settlement selection process for small-scale maps, with the aim of rendering it more holistic, and making methodological contributions in four areas. First, we show how written specifications and rules can be validated against the actual published map products, thus pointing to gaps and potential improvements. Second, we use data enrichment based on supplementing information extracted from point-of-interest data in order to assign functional importance to particular settlements. Third, we use machine learning (ML) algorithms to infer additional rules from existing maps, thus making explicit the deep knowledge of cartographers and allowing to extend the cartographic rule set. And fourth, we show how the results of ML can be transformed into human-readable form for potential use in the guidelines of national mapping agencies. We use the case of settlement selection in the small-scale maps published by the Polish national mapping agency (GUGiK). However, we believe that the methods and findings of this paper can be adapted to other environments with minor modifications.

Słowa kluczowe EN
Settlement selection
small-scale mapping
data enrichment
machine learning
Dyscyplina PBN
geografia społeczno-ekonomiczna i gospodarka przestrzenna
Czasopismo
Cartography and Geographic Information Science
Tom
45
Zeszyt
2
Strony od-do
111-127
ISSN
1523-0406
Data udostępnienia w otwartym dostępie
2017-01-12
Licencja otwartego dostępu
Uznanie autorstwa