Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Second-order invariants of the inviscid Lundgren–Monin–Novikov equations for 2d vorticity fields

Autor
Grebenev, V. N.
Grichkov, A. N.
Oberlack, M.
Wacławczyk, Marta
Data publikacji
2021
Abstrakt (EN)

In Grebenev, Wacławczyk, Oberlack (2019 Phys A: Math. Theor. 52, 33), the conformal invariance (CI) of the characteristic XX1(t) (the zero-vorticity Lagrangian path) of the first equation (i.e. for the evolution of the 1-point PDF f1(xx1,ω1,t), xx1∈D1⊂R2) of the inviscid Lundgren–Monin–Novikov (LMN) equations for 2d vorticity fields was derived. The infinitesimal operator admitted by the characteristics equation generates an infinite-dimensional Lie pseudo-group G which conformally acts on D1. We define the conformal invariant differential form ds2=f1⋅(dX112+dX212) along the characteristic XX1(t)|ω1=0 together with the simple action functional F(XX1,ds2). We demonstrate that GY, which is a subgroup of the group G restricted on the variables xx1 and f1, gives rise to a symmetry transformations of F(XX1,ds2). With this, we calculate the second-order universal differential invariant JY2 (or the multiscale representation of the invariants) of GY under the action on the zero-vorticity characteristics. We show that F(XX1,ds2) is a scalar invariant and generates all differential invariants, which look like the quantities of different scales, from JY2 by the operators of invariant differentiation. It gives insight into the geometry of a flow domain nearby point xx1 in the sense of Cartan.

Słowa kluczowe EN
Lundgren–Monin–Novikov equations
Multiscale representation of the invariants
Conformal symmetries
2d vorticity field
The second-order universal differential invariant
Dyscyplina PBN
nauki fizyczne
Czasopismo
Zeitschrift für Angewandte Mathematik und Physik
Tom
72
Zeszyt
3
Strony od-do
3-20
ISSN
0044-2275
Licencja otwartego dostępu
Dostęp zamknięty