Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Surface-Related Features Responsible for Cytotoxic Behavior of MXenes Layered Materials Predicted with Machine Learning Approach

Autor
Jastrzębska, Agnieszka M.
Marchwiany, Maciej E.
Popielska, Magdalena
Popielski, Mariusz
Majewski, Jacek
Jastrzębska, Agnieszka
Data publikacji
2020
Abstrakt (EN)

To speed up the implementation of the two-dimensional materials in the development of potential biomedical applications, the toxicological aspects toward human health need to be addressed. Due to time-consuming and expensive analysis, only part of the continuously expanding family of 2D materials can be tested in vitro. The machine learning methods can be used—by extracting new insights from available biological data sets, and provide further guidance for experimental studies. This study identifies the most relevant highly surface-specific features that might be responsible for cytotoxic behavior of 2D materials, especially MXenes. In particular, two factors, namely, the presence of transition metal oxides and lithium atoms on the surface, are identified as cytotoxicity-generating features. The developed machine learning model succeeds in predicting toxicity for other 2D MXenes, previously not tested in vitro, and hence, is able to complement the existing knowledge coming from in vitro studies. Thus, we claim that it might be one of the solutions for reducing the number of toxicological studies needed, and allows for minimizing failures in future biological applications.

Słowa kluczowe EN
machine learning
MXenes
cytotoxicity
van der Waals layered materials
Dyscyplina PBN
nauki fizyczne
Czasopismo
Materials
Tom
13
Zeszyt
14
Strony od-do
1-17
ISSN
1996-1944
Data udostępnienia w otwartym dostępie
2020-07-10
Licencja otwartego dostępu
Uznanie autorstwa