Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

The Coolidge--Nagata conjecture

Autor
Koras, Mariusz
Palka, Karol
Data publikacji
2017
Abstrakt (EN)

Let E in P^2 be a complex rational cuspidal curve contained in the projective plane. The Coolidge–Nagata conjecture asserts that E is Cremona-equivalent to a line, that is, it is mapped onto a line by some birational transformation of P^2. The second author recently analyzed the log minimal model program run for the pair (X,1/2 D), where (X,D)→(P^2,E) is a minimal resolution of singularities, and as a corollary he proved the conjecture in the case when more than one irreducible curve in P^2∖E is contracted by the process of minimalization. We prove the conjecture in the remaining cases.

Czasopismo
Duke Mathematical Journal
Tom
166
Zeszyt
16
Strony od-do
3085-3145
ISSN
0012-7094
Licencja otwartego dostępu
Dostęp zamknięty