Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Transitive Lie Algebras of Nilpotent Vector Fields and their Tanaka Prolongations

Autor
Grabowska, Katarzyna
Grabowski, Janusz
Ravanpak, Zohreh
Data publikacji
2021
Abstrakt (EN)

Transitive nilpotent local Lie algebras of vector fields can be easily constructed from dilations h of Rn with positive weights (give me a sequence of n positive integers and I will give you a transitive nilpotent Lie algebra of vector fields on Rn ) as the Lie algebras g<0(h) of the polynomial vector fields of negative weights with respect to h. We provide a condition for the dilation h such that the Lie algebras of polynomial vectors defined by h are exactly the Tanaka prolongations of the corresponding nilpotent Lie algebras g<0(h) . However, in some cases of dilations h we can find some ‘strange’ elements of the Tanaka prolongations of g<0(h) , which we describe in detail. In particular, we give a complete description of derivations of degree 0 for the Lie algebra g<0(h) .

Słowa kluczowe EN
Vector field
nilpotent Lie algebra
dilation
derivation
homogeneity structures
Dyscyplina PBN
nauki fizyczne
Czasopismo
Journal of Lie Theory
Tom
31
Strony od-do
1003-1014
ISSN
0949-5932
Licencja otwartego dostępu
Dostęp zamknięty