Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BY-NC-NDCC-BY-NC-ND - Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych

Pseudo-labeling with transformers for improving Question Answering systems

Autor
Kuligowska, Karolina
Kowalczuk, Bartłomiej
Data publikacji
2021
Abstrakt (EN)

Advances in neural networks contributed to the fast development of Natural Language Processing systems. As a result, Question Answering systems have evolved and can classify and answer questions in an intuitive yet communicative way. However, the lack of large volumes of labeled data prevents large-scale training and development of Question Answering systems, confirming the need for further research. This paper aims to handle this real-world problem of lack of labeled datasets by applying a pseudo-labeling technique relying on a neural network transformer model DistilBERT. In order to evaluate our contribution, we examined the performance of a text classification transformer model that was fine-tuned on the data subject to prior pseudo-labeling. Research has shown the usefulness of the applied pseudo-labeling technique on a neural network text classification transformer model DistilBERT. The results of our analysis indicated that the model with additional pseudo-labeled data achieved the best results among other compared neural network architectures. Based on that result, Question Answering systems may be directly improved by enriching their training steps with additional data acquired cost-effectively.

Słowa kluczowe EN
Natural Language Processing
Question Answering systems
pseudo-labeling
neural networks
transfer learning
knowledge distillation
Dyscyplina PBN
ekonomia i finanse
Czasopismo
Procedia Computer Science
Tom
192
Strony od-do
1162-1169
ISSN
1877-0509
Data udostępnienia w otwartym dostępie
2021-10-02
Licencja otwartego dostępu
Uznanie autorstwa- Użycie niekomercyjne- Bez utworów zależnych