Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Spatial machine learning: new opportunities for regional science

Autor
Kopczewska, Katarzyna
Data publikacji
2022
Abstrakt (EN)

This paper is a methodological guide to using machine learning in the spatial context. It provides an overview of the existing spatial toolbox proposed in the literature: unsupervised learning, which deals with clustering of spatial data, and supervised learning, which displaces classical spatial econometrics. It shows the potential of using this developing methodology, as well as its pitfalls. It catalogues and comments on the usage of spatial clustering methods (for locations and values, both separately and jointly) for mapping, bootstrapping, cross-validation, GWR modelling and density indicators. It provides details of spatial machine learning models, which are combined with spatial data integration, modelling, model fine-tuning and predictions to deal with spatial autocorrelation and big data. The paper delineates “already available” and “forthcoming” methods and gives inspiration for transplanting modern quantitative methods from other thematic areas to research in regional science.

Słowa kluczowe EN
spatial clustering
spatial regression
spatial cross-validation
perspectives
Dyscyplina PBN
ekonomia i finanse
Czasopismo
Annals of Regional Science
Tom
68
Strony od-do
713-755
ISSN
0570-1864
Licencja otwartego dostępu
Dostęp zamknięty