Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Complex contact manifolds, varieties of minimal rational tangents, and exterior differential systems

Autor
Buczyński, Jarosław
Moreno, Giovanni
Data publikacji
2019
Abstrakt (EN)

Complex contact manifolds arise naturally in differential geometry, algebraic geometry and exterior differential systems. Their classification would answer an important question about holonomy groups. The geometry of such manifold X is governed by the contact lines contained in X. These are related to the notion of a variety of minimal rational tangents. In this review we discuss the partial classification theorems of projective complex contact manifolds. Among such manifolds one finds contact Fano manifolds (which include adjoint varieties) and projectivised cotangent bundles. In the first case we also discuss a distinguished contact cone structure, arising as the variety of minimal rational tangents. We discuss the repercussion of the aforementioned classification theorems for the geometry of quaternion-Kähler manifolds with positive scalar curvature and for the geometry of second-order PDEs imposed on hypersurfaces.

Słowa kluczowe EN
contact geometry
projective complex contact manifolds
quaternionKähler manifolds
varieties of minimal rational tangents
exterior differential systems
Dyscyplina PBN
matematyka
Czasopismo
BANACH CENTER PUBLICATIONS
Tom
117
Strony od-do
145-176
ISSN
0137-6934
Licencja otwartego dostępu
Dostęp zamknięty