Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Deterministic Integer Factorization with Oracles for Euler’s Totient Function

Autor
Pomykała, Jacek
Hittmeir, Markus
Data publikacji
2020
Abstrakt (EN)

In this paper, we construct deterministic factorization algorithms for natural numbers N under the assumption that the prime power decomposition of Euler’s totient function φ (N ) is known. Their runtime complexities depend on the number ω (N ) of distinct prime divisors of N , and we present efficient methods for relatively small values of ω (N ) as well as for its large values. One of our main goals is to establish an asymptotic expression with explicit remainder term O (x /A ) for the number of positive integers N ≤ x composed of s distinct prime factors that can be factored nontrivially in deterministic time t = t (x ), provided that the prime power decomposition of φ (N ) is known. We obtain it for A = A (x ) = x 1–ɛ , where ɛ = ɛ (s ) > 0 is sufficiently small and t = t (x ) is a polynomial in log x of degree d = d (ɛ ). An analogous bound is deduced under the assumption of the oracle providing the decomposition of orders of elements in ℤ N * .

Słowa kluczowe EN
Factorization
Totient Function
Deterministic Reduction
Dyscyplina PBN
matematyka
Czasopismo
Fundamenta Informaticae
Tom
172
Zeszyt
1
Strony od-do
39-51
ISSN
0169-2968
Licencja otwartego dostępu
Dostęp zamknięty