Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Random non-Abelian G-circulant matrices. Spectrum of random convolution operators on large finite groups

Autor
Adamczak, Radosław
Data publikacji
2021
Abstrakt (EN)

We analyze the limiting behavior of the eigenvalue and singular value distribution for random convolution operators on large (not necessarily Abelian) groups, extending the results by Meckes for the Abelian case. We show that for regular sequences of groups, the limiting distribution of eigenvalues (respectively singular values) is a mixture of eigenvalue (respectively singular value) distributions of Ginibre matrices with the directing measure being related to the limiting behavior of the Plancherel measure of the sequence of groups. In particular, for the sequence of symmetric groups, the limiting distributions are just the circular and quarter circular laws, whereas e.g. for the dihedral groups, the limiting distributions have unbounded supports but are different than in the Abelian case. We also prove that under additional assumptions on the sequence of groups (in particular, for symmetric groups of increasing order) families of stochastically independent random convolution operators converge in moments to free circular elements. Finally, in the Gaussian case, we provide Central Limit Theorems for linear eigenvalue statistics.

Słowa kluczowe EN
Random matrices
random convolution operators
random circulants
non-Abelian groups
Plancherel measure
limiting spectral distribution
asymptotic freeness
linear eigenvalue statistics
Dyscyplina PBN
matematyka
Czasopismo
Random Matrices: Theory and Application
Tom
10
Zeszyt
3
Strony od-do
2250002
ISSN
2010-3263
Licencja otwartego dostępu
Dostęp zamknięty