Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Autor
Parys, Paweł
Niwiński, Damian
Arnold, André
Data publikacji
2021
Abstrakt (EN)

We consider nested fixed-point expressions like μ z. ν y. μ x. f(x,y,z) evaluated over a finite lattice, and ask how many queries to a function f are needed to find the value. The previous upper bounds for a monotone function f of arity d over the lattice {0,1}ⁿ were of the order n^{(d)}, whereas a lower bound of Ω(n²/(lg n)) is known in case when at least one alternation between the least (μ) and the greatest (ν) fixed point occurs in the expression. Following a recent development for parity games, we show here that a quasi-polynomial number of queries is sufficient, namely n^{lg(d/lg n)+(1)}. The algorithm is an abstract version of several algorithms proposed recently by a number of authors, which involve (implicitly or explicitly) the structure of a universal tree. We then show a quasi-polynomial lower bound for the number of queries used by the algorithms in consideration.

Słowa kluczowe EN
Mu-calculus
Parity games
Quasi-polynomial time
Black-box algorithm
Dyscyplina PBN
informatyka
Tom
183
Strony od-do
9:1--9:23
Data udostępnienia w otwartym dostępie
2021-01-13
Licencja otwartego dostępu
Uznanie autorstwa