Artykuł w czasopiśmie
Brak miniatury
Licencja
Energy-Efficient Neural Network Inference with Microcavity Exciton Polaritons
Autor
Furman, Magdalena
Król, Marcin
Matuszewski, Michał
Sanvitto, D.
Ballarini, D.
Liew, T.C.H.
Data publikacji
2021
Abstrakt (EN)
We propose all-optical neural networks characterized by very high energy efficiency and performance density of inference. We argue that the use of microcavity exciton polaritons allows one to take advantage of the properties of both photons and electrons in a seamless manner. This results in strong optical nonlinearity without the use of optoelectronic conversion. We propose a design of a realistic neural network and estimate energy cost to be at the level of attojoules per bit, also when including the optoelectronic conversion at the input and output of the network, several orders of magnitude below state-of-the-art hardware implementations. We propose two kinds of nonlinear
Dyscyplina PBN
nauki fizyczne
Czasopismo
Physical Review Applied
Tom
16
Zeszyt
2
Strony od-do
024045-1-16
Licencja otwartego dostępu
Dostęp zamknięty