Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Online Predictor Using Machine Learning to Predict Novel Coronavirus and Other Pathogenic Viruses

Autor
Plewczyński, Dariusz
Maity, Debasree
Ghosh, Nimisha
Saha, Indrajit
Sarkar, Jnanendra Prasad
Data publikacji
2022
Abstrakt (EN)

The problem of virus classification is always a subject of concern for virology or epidemiology over the decades. In this regard, a machine learning technique can be used to predict the novel coronavirus by considering its sequence. Thus, we are proposing a machine learning-based novel coronavirus prediction technique, called COVID-Predictor, where 1000 sequences of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and other viruses are used to train a Naive Bayes classifier so that it can predict any unknown sequences of these viruses. The model has been validated using 10-fold cross-validation in comparison with other machine learning techniques. The results show the superiority of our predictor by achieving an average 99.7% accuracy on an unseen validation set of viruses. The same pre-trained model has been used to design a web-based application where sequences of unknown viruses can be uploaded to predict the novel coronavirus.

Dyscyplina PBN
nauki biologiczne
Czasopismo
ACS Omega
Tom
7
Zeszyt
27
Strony od-do
23069-23074
Licencja otwartego dostępu
Dostęp zamknięty