Artykuł w czasopiśmie
Brak miniatury
Licencja
Training a Neural Network with Exciton-Polariton Optical Nonlinearity
Autor
Panico, R.
Matuszewski, Michał
Ardizzone, Vincenzo
Sanvitto, Daniele
Ballarini, Dario
Data publikacji
2022
Abstrakt (EN)
In contrast to software simulations of neural networks, hardware implementations have limited or no tunability. While such networks promise great improvements in terms of speed and energy efficiency, their performance is limited by the difficulty of applying efficient training. We propose and realize experimentally an optical system where highly efficient backpropagation training can be applied through an array of highly nonlinear, nontunable nodes. The system includes exciton-polariton nodes realizing nonlinear activation functions. We demonstrate high classification accuracy in the MNIST handwritten digit benchmark in a single-hidden-layer system.
Dyscyplina PBN
nauki fizyczne
Czasopismo
Physical Review Applied
Tom
18
Zeszyt
2
Strony od-do
024028-1 -8
Licencja otwartego dostępu
Dostęp zamknięty