Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Diffusive and anti-diffusive behavior for kinetic models of opinion dynamics

Autor
Leszczyński, Henryk
Puźniakowska-Gałuch, Elżbieta
Lachowicz, Mirosław
Data publikacji
2019
Abstrakt (EN)

In the present paper, we study a class of nonlinear integro-differential equations of a kinetic type describing the dynamics of opinion for two types of societies: conformist (σ=1) and anti-conformist (σ=−1). The essential role is played by the symmetric nature of interactions. The class may be related to the mesoscopic scale of description. This means that we are going to statistically describe an individual state of an agent of the system. We show that the corresponding equations result at the macroscopic scale in two different pictures: anti-diffusive (σ=1) and diffusive (σ=−1). We provide a rigorous result on the convergence. The result captures the macroscopic behavior resulting from the mesoscopic one. In numerical examples, we observe both unipolar and bipolar behavior known in political sciences.

Słowa kluczowe EN
opinion dynamics
symmetric interactions
kinetic equations
integro-differential equations
conformist society
individualistic society
Dyscyplina PBN
matematyka
Czasopismo
Symmetry
Tom
11
Zeszyt
8
Strony od-do
1-15
ISSN
2073-8994
Licencja otwartego dostępu
Dostęp zamknięty