Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Turing Kernelization for Finding Long Paths in Graph Classes Excluding a Topological Minor

Autor
Pilipczuk, Marcin
Jansen, Bart M. P.
Wrochna, Marcin
Data publikacji
2019
Abstrakt (EN)

The notion of Turing kernelization investigates whether a polynomial-time algorithm can solve an NP-hard problem, when it is aided by an oracle that can be queried for the answers to bounded-size subproblems. One of the main open problems in this direction is whether k-Path admits a polynomial Turing kernel: can a polynomial-time algorithm determine whether an undirected graph has a simple path of length k, using an oracle that answers queries of size kO(1)? We show this can be done when the input graph avoids a fixed graph H as a topological minor, thereby significantly generalizing an earlier result for bounded-degree and K3,t-minor-free graphs. Moreover, we show that k-Path even admits a polynomial Turing kernel when the input graph is not H-topological-minor-free itself, but contains a known vertex modulator of size bounded polynomially in the parameter, whose deletion makes it so. To obtain our results, we build on the graph minors decomposition to show that any H-topological-minor-free graph that does not contain a k-path, has a separation that can safely be reduced after communication with the oracle.

Słowa kluczowe EN
Turing kernelization
k-path
Graph minors decomposition
Dyscyplina PBN
informatyka
Czasopismo
Algorithmica
Tom
81
Zeszyt
10
Strony od-do
3936-3967
ISSN
0178-4617
Licencja otwartego dostępu
Dostęp zamknięty