Artykuł w czasopiśmie
Brak miniatury
Licencja
Quivers for 3-manifolds: the correspondence, BPS states, and 3d $$ \mathcal{N} $$ = 2 theories
cris.lastimport.scopus | 2024-02-12T20:32:25Z |
dc.abstract.en | We introduce and explore the relation between quivers and 3-manifolds with the topology of the knot complement. This idea can be viewed as an adaptation of the knots-quivers correspondence to Gukov-Manolescu invariants of knot complements (also known as FK or Z^). Apart from assigning quivers to complements of T(2,2p+1) torus knots, we study the physical interpretation in terms of the BPS spectrum and general structure of 3d N = 2 theories associated to both sides of the correspondence. We also make a step towards categorification by proposing a t-deformation of all objects mentioned above. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Kucharski, Piotr |
dc.date.accessioned | 2024-01-25T18:45:34Z |
dc.date.available | 2024-01-25T18:45:34Z |
dc.date.issued | 2020 |
dc.description.finance | Publikacja bezkosztowa |
dc.description.number | 9 |
dc.description.volume | 2020 |
dc.identifier.doi | 10.1007/JHEP09(2020)075 |
dc.identifier.issn | 1126-6708 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/117778 |
dc.identifier.weblink | http://link.springer.com/content/pdf/10.1007/JHEP09(2020)075.pdf |
dc.language | eng |
dc.pbn.affiliation | physical sciences |
dc.relation.ispartof | Journal of High Energy Physics |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | Quivers for 3-manifolds: the correspondence, BPS states, and 3d $$ \mathcal{N} $$ = 2 theories |
dc.type | JournalArticle |
dspace.entity.type | Publication |