Artykuł w czasopiśmie
Brak miniatury
Licencja
An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz
dc.abstract.en | At 66-=Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass ≍10<SUP>6</SUP>-=M<SUB>⊙</SUB>, disrupting a star of ≍1-=M<SUB>⊙</SUB>. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L ∝ t<SUP>2</SUP>, consistent with a photosphere expanding at constant velocity (≳2000-=km-=s<SUP>-1</SUP>), and a line-forming region producing initially blueshifted H and He-=II profiles with v = 3000-10-=000-=km-=s<SUP>-1</SUP>. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission - the first time this connection has been observed in a TDE. The light-curve rise begins 29 ± 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N-=III) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at ≍10<SUP>41</SUP>-=erg-=s<SUP>-1</SUP>. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Nicholl, M. |
dc.contributor.author | Wevers, T. |
dc.contributor.author | Oates, S. R. |
dc.contributor.author | Alexander, K. D. |
dc.contributor.author | Leloudas, G. |
dc.contributor.author | Onori, F. |
dc.contributor.author | Jerkstrand, A. |
dc.contributor.author | Gomez, S. |
dc.contributor.author | Campana, S. |
dc.contributor.author | Arcavi, I. |
dc.contributor.author | Charalampopoulos, P. |
dc.contributor.author | Gromadzki, Mariusz |
dc.contributor.author | Ihanec, Nada |
dc.contributor.author | Jonker, P. G. |
dc.contributor.author | Lawrence, A. |
dc.contributor.author | Mandel, I. |
dc.contributor.author | Schulze, S. |
dc.contributor.author | Short, P. |
dc.contributor.author | Burke, J. |
dc.contributor.author | McCully, C. |
dc.contributor.author | Hiramatsu, D. |
dc.contributor.author | Howell, D. A. |
dc.contributor.author | Pellegrino, C. |
dc.contributor.author | Abbot, H. |
dc.contributor.author | Anderson, J. P. |
dc.contributor.author | Berger, E. |
dc.contributor.author | Blanchard, P. K. |
dc.contributor.author | Cannizzaro, G. |
dc.contributor.author | Chen, T. -W. |
dc.contributor.author | Dennefeld, M. |
dc.contributor.author | Galbany, L. |
dc.contributor.author | González-Gaitán, S. |
dc.contributor.author | Hosseinzadeh, G. |
dc.contributor.author | Inserra, C. |
dc.contributor.author | Irani, I. |
dc.contributor.author | Kuin, P. |
dc.contributor.author | Müller-Bravo, T. |
dc.contributor.author | Pineda, J. |
dc.contributor.author | Ross, N. P. |
dc.contributor.author | Roy, R. |
dc.contributor.author | Smartt, S. J. |
dc.contributor.author | Smith, K. W. |
dc.contributor.author | Tucker, B. |
dc.contributor.author | Wyrzykowski, Łukasz |
dc.contributor.author | Young, D. R. |
dc.date.accessioned | 2024-01-24T16:43:45Z |
dc.date.available | 2024-01-24T16:43:45Z |
dc.date.copyright | 2020-06-03 |
dc.date.issued | 2020 |
dc.description.accesstime | BEFORE_PUBLICATION |
dc.description.finance | Publikacja bezkosztowa |
dc.description.number | 1 |
dc.description.version | ORIGINAL_AUTHOR |
dc.description.volume | 499 |
dc.identifier.doi | 10.1093/MNRAS/STAA2824 |
dc.identifier.issn | 0035-8711 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/100944 |
dc.identifier.weblink | http://adsabs.harvard.edu/abs/2020MNRAS.499..482N |
dc.language | eng |
dc.pbn.affiliation | astronomy |
dc.relation.ispartof | Monthly Notices of the Royal Astronomical Society |
dc.relation.pages | 482-504 |
dc.rights | Other |
dc.sciencecloud | nosend |
dc.title | An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz |
dc.type | JournalArticle |
dspace.entity.type | Publication |