Artykuł w czasopiśmie
Brak miniatury
Licencja
Towards Grad-CAM Based Explainability in a Legal Text Processing Pipeline
dc.abstract.en | Explainable AI (XAI) is a domain focused on providing interpretabil- ity and explainability of a decision-making process. In the domain of law, in addi- tion to system and data transparency, it also requires the (legal-) decision-model transparency and the ability to understand the model’s inner working when arriv- ing at the decision. This paper provides the first approaches to using a popular im- age processing technique, Grad-CAM, to showcase the explainability concept for legal texts. With the help of adapted Grad-CAM metrics, we show the interplay between the choice of embeddings, its consideration of contextual information, and their effect on downstream processing. |
dc.affiliation | Uniwersytet Warszawski |
dc.conference.country | Czechy |
dc.conference.datefinish | 2020-12-10 |
dc.conference.datestart | 2020-12-09 |
dc.conference.place | Virtual |
dc.conference.series | International Conference on Legal Knowledge and Information Systems |
dc.conference.series | International Conference on Legal Knowledge and Information Systems |
dc.conference.seriesshortcut | JURIX |
dc.conference.shortcut | JURIX 2020 |
dc.conference.weblink | https://jurix2020.law.muni.cz/ |
dc.contributor.author | Ramakrishna, Shashishekar |
dc.contributor.author | Górski, Łukasz |
dc.contributor.author | Nowosielski, Jędrzej |
dc.date.accessioned | 2024-01-26T11:03:42Z |
dc.date.available | 2024-01-26T11:03:42Z |
dc.date.issued | 2021 |
dc.description.finance | Publikacja bezkosztowa |
dc.description.volume | 2891 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/123551 |
dc.identifier.weblink | http://ceur-ws.org/Vol-2891/XAILA-2020_paper_1.pdf |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.pages | 1-12 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | Legal Knowledge Representation |
dc.subject.en | Language Models |
dc.subject.en | Grad-CAM |
dc.subject.en | HeatMaps |
dc.subject.en | CNN |
dc.title | Towards Grad-CAM Based Explainability in a Legal Text Processing Pipeline |
dc.type | JournalArticle |
dspace.entity.type | Publication |