Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa
 

Dynamic longest common substring in polylogarithmic time

Uproszczony widok
dc.abstract.enThe longest common substring problem consists in finding a longest string that appears as a (contiguous) substring of two input strings. We consider the dynamic variant of this problem, in which we are to maintain two dynamic strings S and T, each of length at most n, that undergo substitutions of letters, in order to be able to return a longest common substring after each substitution. Recently, Amir et al. [ESA 2019] presented a solution for this problem that needs only
dc.affiliationUniwersytet Warszawski
dc.conference.countryNiemcy
dc.conference.datefinish2020-07-11
dc.conference.datestart2020-07-08
dc.conference.placeSaarbrücken
dc.conference.seriesInternational Colloquium on Automata Languages and Programming
dc.conference.seriesInternational Colloquium on Automata Languages and Programming
dc.conference.seriesshortcutICALP
dc.conference.shortcutICALP 2020
dc.conference.weblinkhttps://icalp2020.saarland-informatics-campus.de/
dc.contributor.authorPokorski, Karol
dc.contributor.authorGawrychowski, Paweł
dc.contributor.authorCharalampopoulos, Panagiotis
dc.date.accessioned2024-01-24T22:15:29Z
dc.date.available2024-01-24T22:15:29Z
dc.date.copyright2020-06-29
dc.date.issued2020
dc.description.accesstimeAT_PUBLICATION
dc.description.financePublikacja bezkosztowa
dc.description.versionFINAL_PUBLISHED
dc.identifier.doi10.4230/LIPICS.ICALP.2020.27
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/105487
dc.identifier.weblinkhttps://drops.dagstuhl.de/opus/volltexte/2020/12434/
dc.languageeng
dc.pbn.affiliationcomputer and information sciences
dc.relation.pages27:1-27:19
dc.rightsCC-BY
dc.sciencecloudnosend
dc.subject.enstring algorithms
dc.subject.endynamic algorithms
dc.subject.enlongest common substring
dc.titleDynamic longest common substring in polylogarithmic time
dc.typeJournalArticle
dspace.entity.typePublication